Metamath Proof Explorer


Theorem numclwwlk7lem

Description: Lemma for numclwwlk7 , frgrreggt1 and frgrreg : If a finite, nonempty friendship graph is K-regular, the K is a nonnegative integer. (Contributed by AV, 3-Jun-2021)

Ref Expression
Hypothesis numclwwlk7lem.v V = Vtx G
Assertion numclwwlk7lem G RegUSGraph K G FriendGraph V V Fin K 0

Proof

Step Hyp Ref Expression
1 numclwwlk7lem.v V = Vtx G
2 1 finrusgrfusgr G RegUSGraph K V Fin G FinUSGraph
3 2 ad2ant2rl G RegUSGraph K G FriendGraph V V Fin G FinUSGraph
4 simpll G RegUSGraph K G FriendGraph V V Fin G RegUSGraph K
5 simprl G RegUSGraph K G FriendGraph V V Fin V
6 1 frusgrnn0 G FinUSGraph G RegUSGraph K V K 0
7 3 4 5 6 syl3anc G RegUSGraph K G FriendGraph V V Fin K 0