Metamath Proof Explorer


Theorem numclwwlkovh0

Description: Value of operation H , mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in Huneke p. 2. (Contributed by AV, 1-May-2022)

Ref Expression
Hypothesis numclwwlkovh.h H = v V , n 2 w v ClWWalksNOn G n | w n 2 v
Assertion numclwwlkovh0 X V N 2 X H N = w X ClWWalksNOn G N | w N 2 X

Proof

Step Hyp Ref Expression
1 numclwwlkovh.h H = v V , n 2 w v ClWWalksNOn G n | w n 2 v
2 oveq12 v = X n = N v ClWWalksNOn G n = X ClWWalksNOn G N
3 oveq1 n = N n 2 = N 2
4 3 adantl v = X n = N n 2 = N 2
5 4 fveq2d v = X n = N w n 2 = w N 2
6 simpl v = X n = N v = X
7 5 6 neeq12d v = X n = N w n 2 v w N 2 X
8 2 7 rabeqbidv v = X n = N w v ClWWalksNOn G n | w n 2 v = w X ClWWalksNOn G N | w N 2 X
9 ovex X ClWWalksNOn G N V
10 9 rabex w X ClWWalksNOn G N | w N 2 X V
11 8 1 10 ovmpoa X V N 2 X H N = w X ClWWalksNOn G N | w N 2 X