Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Decimal arithmetic (cont.)
numexp2x
Next ⟩
decsplit0b
Metamath Proof Explorer
Ascii
Unicode
Theorem
numexp2x
Description:
Double an integer power.
(Contributed by
Mario Carneiro
, 17-Apr-2015)
Ref
Expression
Hypotheses
numexp.1
⊢
A
∈
ℕ
0
numexpp1.2
⊢
M
∈
ℕ
0
numexp2x.3
⊢
2
⋅
M
=
N
numexp2x.4
⊢
A
M
=
D
numexp2x.5
⊢
D
⁢
D
=
C
Assertion
numexp2x
⊢
A
N
=
C
Proof
Step
Hyp
Ref
Expression
1
numexp.1
⊢
A
∈
ℕ
0
2
numexpp1.2
⊢
M
∈
ℕ
0
3
numexp2x.3
⊢
2
⋅
M
=
N
4
numexp2x.4
⊢
A
M
=
D
5
numexp2x.5
⊢
D
⁢
D
=
C
6
2
nn0cni
⊢
M
∈
ℂ
7
6
2timesi
⊢
2
⋅
M
=
M
+
M
8
3
7
eqtr3i
⊢
N
=
M
+
M
9
8
oveq2i
⊢
A
N
=
A
M
+
M
10
1
nn0cni
⊢
A
∈
ℂ
11
expadd
⊢
A
∈
ℂ
∧
M
∈
ℕ
0
∧
M
∈
ℕ
0
→
A
M
+
M
=
A
M
⁢
A
M
12
10
2
2
11
mp3an
⊢
A
M
+
M
=
A
M
⁢
A
M
13
9
12
eqtri
⊢
A
N
=
A
M
⁢
A
M
14
4
4
oveq12i
⊢
A
M
⁢
A
M
=
D
⁢
D
15
14
5
eqtri
⊢
A
M
⁢
A
M
=
C
16
13
15
eqtri
⊢
A
N
=
C