Metamath Proof Explorer


Theorem numexp2x

Description: Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses numexp.1 A 0
numexpp1.2 M 0
numexp2x.3 2 M = N
numexp2x.4 A M = D
numexp2x.5 D D = C
Assertion numexp2x A N = C

Proof

Step Hyp Ref Expression
1 numexp.1 A 0
2 numexpp1.2 M 0
3 numexp2x.3 2 M = N
4 numexp2x.4 A M = D
5 numexp2x.5 D D = C
6 2 nn0cni M
7 6 2timesi 2 M = M + M
8 3 7 eqtr3i N = M + M
9 8 oveq2i A N = A M + M
10 1 nn0cni A
11 expadd A M 0 M 0 A M + M = A M A M
12 10 2 2 11 mp3an A M + M = A M A M
13 9 12 eqtri A N = A M A M
14 4 4 oveq12i A M A M = D D
15 14 5 eqtri A M A M = C
16 13 15 eqtri A N = C