Metamath Proof Explorer


Theorem numexpp1

Description: Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses numexp.1 A 0
numexpp1.2 M 0
numexpp1.3 M + 1 = N
numexpp1.4 A M A = C
Assertion numexpp1 A N = C

Proof

Step Hyp Ref Expression
1 numexp.1 A 0
2 numexpp1.2 M 0
3 numexpp1.3 M + 1 = N
4 numexpp1.4 A M A = C
5 1 nn0cni A
6 expp1 A M 0 A M + 1 = A M A
7 5 2 6 mp2an A M + 1 = A M A
8 3 oveq2i A M + 1 = A N
9 7 8 4 3eqtr3i A N = C