Metamath Proof Explorer


Theorem numlt

Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numlt.1 T
numlt.2 A 0
numlt.3 B 0
numlt.4 C
numlt.5 B < C
Assertion numlt T A + B < T A + C

Proof

Step Hyp Ref Expression
1 numlt.1 T
2 numlt.2 A 0
3 numlt.3 B 0
4 numlt.4 C
5 numlt.5 B < C
6 3 nn0rei B
7 4 nnrei C
8 1 nnnn0i T 0
9 8 2 nn0mulcli T A 0
10 9 nn0rei T A
11 6 7 10 ltadd2i B < C T A + B < T A + C
12 5 11 mpbi T A + B < T A + C