Metamath Proof Explorer


Theorem numlti

Description: Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numlti.1 T
numlti.2 A
numlti.3 B 0
numlti.4 C 0
numlti.5 C < T
Assertion numlti C < T A + B

Proof

Step Hyp Ref Expression
1 numlti.1 T
2 numlti.2 A
3 numlti.3 B 0
4 numlti.4 C 0
5 numlti.5 C < T
6 1 nnnn0i T 0
7 6 4 num0h C = T 0 + C
8 0nn0 0 0
9 2 nnnn0i A 0
10 2 nngt0i 0 < A
11 1 8 9 4 3 5 10 numltc T 0 + C < T A + B
12 7 11 eqbrtri C < T A + B