Metamath Proof Explorer


Theorem nummul1c

Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses nummul1c.1 T 0
nummul1c.2 P 0
nummul1c.3 A 0
nummul1c.4 B 0
nummul1c.5 N = T A + B
nummul1c.6 D 0
nummul1c.7 E 0
nummul1c.8 A P + E = C
nummul1c.9 B P = T E + D
Assertion nummul1c N P = T C + D

Proof

Step Hyp Ref Expression
1 nummul1c.1 T 0
2 nummul1c.2 P 0
3 nummul1c.3 A 0
4 nummul1c.4 B 0
5 nummul1c.5 N = T A + B
6 nummul1c.6 D 0
7 nummul1c.7 E 0
8 nummul1c.8 A P + E = C
9 nummul1c.9 B P = T E + D
10 1 3 4 numcl T A + B 0
11 5 10 eqeltri N 0
12 11 2 num0u N P = N P + 0
13 0nn0 0 0
14 1 13 num0h 0 = T 0 + 0
15 7 nn0cni E
16 15 addid2i 0 + E = E
17 16 oveq2i A P + 0 + E = A P + E
18 17 8 eqtri A P + 0 + E = C
19 4 2 num0u B P = B P + 0
20 19 9 eqtr3i B P + 0 = T E + D
21 1 3 4 13 13 5 14 2 6 7 18 20 nummac N P + 0 = T C + D
22 12 21 eqtri N P = T C + D