Metamath Proof Explorer


Theorem nummul2c

Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses nummul1c.1 T 0
nummul1c.2 P 0
nummul1c.3 A 0
nummul1c.4 B 0
nummul1c.5 N = T A + B
nummul1c.6 D 0
nummul1c.7 E 0
nummul2c.7 P A + E = C
nummul2c.8 P B = T E + D
Assertion nummul2c P N = T C + D

Proof

Step Hyp Ref Expression
1 nummul1c.1 T 0
2 nummul1c.2 P 0
3 nummul1c.3 A 0
4 nummul1c.4 B 0
5 nummul1c.5 N = T A + B
6 nummul1c.6 D 0
7 nummul1c.7 E 0
8 nummul2c.7 P A + E = C
9 nummul2c.8 P B = T E + D
10 1 3 4 numcl T A + B 0
11 5 10 eqeltri N 0
12 11 nn0cni N
13 2 nn0cni P
14 3 nn0cni A
15 14 13 mulcomi A P = P A
16 15 oveq1i A P + E = P A + E
17 16 8 eqtri A P + E = C
18 4 nn0cni B
19 13 18 9 mulcomli B P = T E + D
20 1 2 3 4 5 6 7 17 19 nummul1c N P = T C + D
21 12 13 20 mulcomli P N = T C + D