Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Properties of the canonical representation of a rational
numsq
Next ⟩
densq
Metamath Proof Explorer
Ascii
Unicode
Theorem
numsq
Description:
Square commutes with canonical numerator.
(Contributed by
Stefan O'Rear
, 15-Sep-2014)
Ref
Expression
Assertion
numsq
⊢
A
∈
ℚ
→
numer
⁡
A
2
=
numer
⁡
A
2
Proof
Step
Hyp
Ref
Expression
1
numdensq
⊢
A
∈
ℚ
→
numer
⁡
A
2
=
numer
⁡
A
2
∧
denom
⁡
A
2
=
denom
⁡
A
2
2
1
simpld
⊢
A
∈
ℚ
→
numer
⁡
A
2
=
numer
⁡
A
2