Metamath Proof Explorer


Theorem numth

Description: Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 10-Feb-1997) (Proof shortened by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypothesis numth.1 A V
Assertion numth x On f f : x 1-1 onto A

Proof

Step Hyp Ref Expression
1 numth.1 A V
2 1 numth2 x On x A
3 bren x A f f : x 1-1 onto A
4 3 rexbii x On x A x On f f : x 1-1 onto A
5 2 4 mpbi x On f f : x 1-1 onto A