Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Introduce the Axiom of Choice
numth3
Next ⟩
numth2
Metamath Proof Explorer
Ascii
Unicode
Theorem
numth3
Description:
All sets are well-orderable under choice.
(Contributed by
Stefan O'Rear
, 28-Feb-2015)
Ref
Expression
Assertion
numth3
⊢
A
∈
V
→
A
∈
dom
⁡
card
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
V
→
A
∈
V
2
cardeqv
⊢
dom
⁡
card
=
V
3
1
2
eleqtrrdi
⊢
A
∈
V
→
A
∈
dom
⁡
card