Metamath Proof Explorer


Theorem numthcor

Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003)

Ref Expression
Assertion numthcor A V x On A x

Proof

Step Hyp Ref Expression
1 breq1 y = A y x A x
2 1 rexbidv y = A x On y x x On A x
3 vpwex 𝒫 y V
4 3 numth2 x On x 𝒫 y
5 vex y V
6 5 canth2 y 𝒫 y
7 ensym x 𝒫 y 𝒫 y x
8 sdomentr y 𝒫 y 𝒫 y x y x
9 6 7 8 sylancr x 𝒫 y y x
10 9 reximi x On x 𝒫 y x On y x
11 4 10 ax-mp x On y x
12 2 11 vtoclg A V x On A x