Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
AC equivalents: well-ordering, Zorn's lemma
numthcor
Next ⟩
weth
Metamath Proof Explorer
Ascii
Unicode
Theorem
numthcor
Description:
Any set is strictly dominated by some ordinal.
(Contributed by
NM
, 22-Oct-2003)
Ref
Expression
Assertion
numthcor
⊢
A
∈
V
→
∃
x
∈
On
A
≺
x
Proof
Step
Hyp
Ref
Expression
1
breq1
⊢
y
=
A
→
y
≺
x
↔
A
≺
x
2
1
rexbidv
⊢
y
=
A
→
∃
x
∈
On
y
≺
x
↔
∃
x
∈
On
A
≺
x
3
vpwex
⊢
𝒫
y
∈
V
4
3
numth2
⊢
∃
x
∈
On
x
≈
𝒫
y
5
vex
⊢
y
∈
V
6
5
canth2
⊢
y
≺
𝒫
y
7
ensym
⊢
x
≈
𝒫
y
→
𝒫
y
≈
x
8
sdomentr
⊢
y
≺
𝒫
y
∧
𝒫
y
≈
x
→
y
≺
x
9
6
7
8
sylancr
⊢
x
≈
𝒫
y
→
y
≺
x
10
9
reximi
⊢
∃
x
∈
On
x
≈
𝒫
y
→
∃
x
∈
On
y
≺
x
11
4
10
ax-mp
⊢
∃
x
∈
On
y
≺
x
12
2
11
vtoclg
⊢
A
∈
V
→
∃
x
∈
On
A
≺
x