Metamath Proof Explorer


Theorem nv0

Description: Zero times a vector is the zero vector. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nv0.1 X = BaseSet U
nv0.4 S = 𝑠OLD U
nv0.6 Z = 0 vec U
Assertion nv0 U NrmCVec A X 0 S A = Z

Proof

Step Hyp Ref Expression
1 nv0.1 X = BaseSet U
2 nv0.4 S = 𝑠OLD U
3 nv0.6 Z = 0 vec U
4 eqid 1 st U = 1 st U
5 4 nvvc U NrmCVec 1 st U CVec OLD
6 eqid + v U = + v U
7 6 vafval + v U = 1 st 1 st U
8 2 smfval S = 2 nd 1 st U
9 1 6 bafval X = ran + v U
10 eqid GId + v U = GId + v U
11 7 8 9 10 vc0 1 st U CVec OLD A X 0 S A = GId + v U
12 5 11 sylan U NrmCVec A X 0 S A = GId + v U
13 6 3 0vfval U NrmCVec Z = GId + v U
14 13 adantr U NrmCVec A X Z = GId + v U
15 12 14 eqtr4d U NrmCVec A X 0 S A = Z