Metamath Proof Explorer


Theorem nv0lid

Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nv0id.1 X=BaseSetU
nv0id.2 G=+vU
nv0id.6 Z=0vecU
Assertion nv0lid UNrmCVecAXZGA=A

Proof

Step Hyp Ref Expression
1 nv0id.1 X=BaseSetU
2 nv0id.2 G=+vU
3 nv0id.6 Z=0vecU
4 2 3 0vfval UNrmCVecZ=GIdG
5 4 oveq1d UNrmCVecZGA=GIdGGA
6 5 adantr UNrmCVecAXZGA=GIdGGA
7 2 nvgrp UNrmCVecGGrpOp
8 1 2 bafval X=ranG
9 eqid GIdG=GIdG
10 8 9 grpolid GGrpOpAXGIdGGA=A
11 7 10 sylan UNrmCVecAXGIdGGA=A
12 6 11 eqtrd UNrmCVecAXZGA=A