Metamath Proof Explorer


Theorem nv0rid

Description: The zero vector is a right identity element. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nv0id.1 X = BaseSet U
nv0id.2 G = + v U
nv0id.6 Z = 0 vec U
Assertion nv0rid U NrmCVec A X A G Z = A

Proof

Step Hyp Ref Expression
1 nv0id.1 X = BaseSet U
2 nv0id.2 G = + v U
3 nv0id.6 Z = 0 vec U
4 2 3 0vfval U NrmCVec Z = GId G
5 4 oveq2d U NrmCVec A G Z = A G GId G
6 5 adantr U NrmCVec A X A G Z = A G GId G
7 2 nvgrp U NrmCVec G GrpOp
8 1 2 bafval X = ran G
9 eqid GId G = GId G
10 8 9 grporid G GrpOp A X A G GId G = A
11 7 10 sylan U NrmCVec A X A G GId G = A
12 6 11 eqtrd U NrmCVec A X A G Z = A