Metamath Proof Explorer


Theorem nv1

Description: From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nv1.1 X = BaseSet U
nv1.4 S = 𝑠OLD U
nv1.5 Z = 0 vec U
nv1.6 N = norm CV U
Assertion nv1 U NrmCVec A X A Z N 1 N A S A = 1

Proof

Step Hyp Ref Expression
1 nv1.1 X = BaseSet U
2 nv1.4 S = 𝑠OLD U
3 nv1.5 Z = 0 vec U
4 nv1.6 N = norm CV U
5 simp1 U NrmCVec A X A Z U NrmCVec
6 1 4 nvcl U NrmCVec A X N A
7 6 3adant3 U NrmCVec A X A Z N A
8 1 3 4 nvz U NrmCVec A X N A = 0 A = Z
9 8 necon3bid U NrmCVec A X N A 0 A Z
10 9 biimp3ar U NrmCVec A X A Z N A 0
11 7 10 rereccld U NrmCVec A X A Z 1 N A
12 1 3 4 nvgt0 U NrmCVec A X A Z 0 < N A
13 12 biimp3a U NrmCVec A X A Z 0 < N A
14 1re 1
15 0le1 0 1
16 divge0 1 0 1 N A 0 < N A 0 1 N A
17 14 15 16 mpanl12 N A 0 < N A 0 1 N A
18 7 13 17 syl2anc U NrmCVec A X A Z 0 1 N A
19 simp2 U NrmCVec A X A Z A X
20 1 2 4 nvsge0 U NrmCVec 1 N A 0 1 N A A X N 1 N A S A = 1 N A N A
21 5 11 18 19 20 syl121anc U NrmCVec A X A Z N 1 N A S A = 1 N A N A
22 6 recnd U NrmCVec A X N A
23 22 3adant3 U NrmCVec A X A Z N A
24 23 10 recid2d U NrmCVec A X A Z 1 N A N A = 1
25 21 24 eqtrd U NrmCVec A X A Z N 1 N A S A = 1