Metamath Proof Explorer


Theorem nvabs

Description: Norm difference property of a normed complex vector space. Problem 3 of Kreyszig p. 64. (Contributed by NM, 4-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvabs.1 X = BaseSet U
nvabs.2 G = + v U
nvabs.4 S = 𝑠OLD U
nvabs.6 N = norm CV U
Assertion nvabs U NrmCVec A X B X N A N B N A G -1 S B

Proof

Step Hyp Ref Expression
1 nvabs.1 X = BaseSet U
2 nvabs.2 G = + v U
3 nvabs.4 S = 𝑠OLD U
4 nvabs.6 N = norm CV U
5 1 2 3 4 nvdif U NrmCVec A X B X N A G -1 S B = N B G -1 S A
6 5 negeqd U NrmCVec A X B X N A G -1 S B = N B G -1 S A
7 1 4 nvcl U NrmCVec B X N B
8 7 3adant2 U NrmCVec A X B X N B
9 1 4 nvcl U NrmCVec A X N A
10 9 3adant3 U NrmCVec A X B X N A
11 simp1 U NrmCVec A X B X U NrmCVec
12 neg1cn 1
13 1 3 nvscl U NrmCVec 1 A X -1 S A X
14 12 13 mp3an2 U NrmCVec A X -1 S A X
15 14 3adant2 U NrmCVec B X A X -1 S A X
16 1 2 nvgcl U NrmCVec B X -1 S A X B G -1 S A X
17 15 16 syld3an3 U NrmCVec B X A X B G -1 S A X
18 17 3com23 U NrmCVec A X B X B G -1 S A X
19 1 4 nvcl U NrmCVec B G -1 S A X N B G -1 S A
20 11 18 19 syl2anc U NrmCVec A X B X N B G -1 S A
21 20 renegcld U NrmCVec A X B X N B G -1 S A
22 1 2 nvcom U NrmCVec A X B G -1 S A X A G B G -1 S A = B G -1 S A G A
23 18 22 syld3an3 U NrmCVec A X B X A G B G -1 S A = B G -1 S A G A
24 simprr U NrmCVec A X B X B X
25 14 adantrr U NrmCVec A X B X -1 S A X
26 simprl U NrmCVec A X B X A X
27 24 25 26 3jca U NrmCVec A X B X B X -1 S A X A X
28 1 2 nvass U NrmCVec B X -1 S A X A X B G -1 S A G A = B G -1 S A G A
29 27 28 syldan U NrmCVec A X B X B G -1 S A G A = B G -1 S A G A
30 29 3impb U NrmCVec A X B X B G -1 S A G A = B G -1 S A G A
31 eqid 0 vec U = 0 vec U
32 1 2 3 31 nvlinv U NrmCVec A X -1 S A G A = 0 vec U
33 32 3adant3 U NrmCVec A X B X -1 S A G A = 0 vec U
34 33 oveq2d U NrmCVec A X B X B G -1 S A G A = B G 0 vec U
35 1 2 31 nv0rid U NrmCVec B X B G 0 vec U = B
36 35 3adant2 U NrmCVec A X B X B G 0 vec U = B
37 30 34 36 3eqtrd U NrmCVec A X B X B G -1 S A G A = B
38 23 37 eqtrd U NrmCVec A X B X A G B G -1 S A = B
39 38 fveq2d U NrmCVec A X B X N A G B G -1 S A = N B
40 1 2 4 nvtri U NrmCVec A X B G -1 S A X N A G B G -1 S A N A + N B G -1 S A
41 18 40 syld3an3 U NrmCVec A X B X N A G B G -1 S A N A + N B G -1 S A
42 39 41 eqbrtrrd U NrmCVec A X B X N B N A + N B G -1 S A
43 10 recnd U NrmCVec A X B X N A
44 20 recnd U NrmCVec A X B X N B G -1 S A
45 43 44 subnegd U NrmCVec A X B X N A N B G -1 S A = N A + N B G -1 S A
46 42 45 breqtrrd U NrmCVec A X B X N B N A N B G -1 S A
47 8 10 21 46 lesubd U NrmCVec A X B X N B G -1 S A N A N B
48 6 47 eqbrtrd U NrmCVec A X B X N A G -1 S B N A N B
49 simp2 U NrmCVec A X B X A X
50 1 3 nvscl U NrmCVec 1 B X -1 S B X
51 12 50 mp3an2 U NrmCVec B X -1 S B X
52 51 3adant2 U NrmCVec A X B X -1 S B X
53 simp3 U NrmCVec A X B X B X
54 1 2 nvass U NrmCVec A X -1 S B X B X A G -1 S B G B = A G -1 S B G B
55 11 49 52 53 54 syl13anc U NrmCVec A X B X A G -1 S B G B = A G -1 S B G B
56 1 2 3 31 nvlinv U NrmCVec B X -1 S B G B = 0 vec U
57 56 3adant2 U NrmCVec A X B X -1 S B G B = 0 vec U
58 57 oveq2d U NrmCVec A X B X A G -1 S B G B = A G 0 vec U
59 1 2 31 nv0rid U NrmCVec A X A G 0 vec U = A
60 59 3adant3 U NrmCVec A X B X A G 0 vec U = A
61 55 58 60 3eqtrd U NrmCVec A X B X A G -1 S B G B = A
62 61 fveq2d U NrmCVec A X B X N A G -1 S B G B = N A
63 1 2 nvgcl U NrmCVec A X -1 S B X A G -1 S B X
64 52 63 syld3an3 U NrmCVec A X B X A G -1 S B X
65 1 2 4 nvtri U NrmCVec A G -1 S B X B X N A G -1 S B G B N A G -1 S B + N B
66 64 65 syld3an2 U NrmCVec A X B X N A G -1 S B G B N A G -1 S B + N B
67 62 66 eqbrtrrd U NrmCVec A X B X N A N A G -1 S B + N B
68 1 4 nvcl U NrmCVec A G -1 S B X N A G -1 S B
69 11 64 68 syl2anc U NrmCVec A X B X N A G -1 S B
70 10 8 69 lesubaddd U NrmCVec A X B X N A N B N A G -1 S B N A N A G -1 S B + N B
71 67 70 mpbird U NrmCVec A X B X N A N B N A G -1 S B
72 10 8 resubcld U NrmCVec A X B X N A N B
73 72 69 absled U NrmCVec A X B X N A N B N A G -1 S B N A G -1 S B N A N B N A N B N A G -1 S B
74 48 71 73 mpbir2and U NrmCVec A X B X N A N B N A G -1 S B