| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvabs.1 |
|
| 2 |
|
nvabs.2 |
|
| 3 |
|
nvabs.4 |
|
| 4 |
|
nvabs.6 |
|
| 5 |
1 2 3 4
|
nvdif |
|
| 6 |
5
|
negeqd |
|
| 7 |
1 4
|
nvcl |
|
| 8 |
7
|
3adant2 |
|
| 9 |
1 4
|
nvcl |
|
| 10 |
9
|
3adant3 |
|
| 11 |
|
simp1 |
|
| 12 |
|
neg1cn |
|
| 13 |
1 3
|
nvscl |
|
| 14 |
12 13
|
mp3an2 |
|
| 15 |
14
|
3adant2 |
|
| 16 |
1 2
|
nvgcl |
|
| 17 |
15 16
|
syld3an3 |
|
| 18 |
17
|
3com23 |
|
| 19 |
1 4
|
nvcl |
|
| 20 |
11 18 19
|
syl2anc |
|
| 21 |
20
|
renegcld |
|
| 22 |
1 2
|
nvcom |
|
| 23 |
18 22
|
syld3an3 |
|
| 24 |
|
simprr |
|
| 25 |
14
|
adantrr |
|
| 26 |
|
simprl |
|
| 27 |
24 25 26
|
3jca |
|
| 28 |
1 2
|
nvass |
|
| 29 |
27 28
|
syldan |
|
| 30 |
29
|
3impb |
|
| 31 |
|
eqid |
|
| 32 |
1 2 3 31
|
nvlinv |
|
| 33 |
32
|
3adant3 |
|
| 34 |
33
|
oveq2d |
|
| 35 |
1 2 31
|
nv0rid |
|
| 36 |
35
|
3adant2 |
|
| 37 |
30 34 36
|
3eqtrd |
|
| 38 |
23 37
|
eqtrd |
|
| 39 |
38
|
fveq2d |
|
| 40 |
1 2 4
|
nvtri |
|
| 41 |
18 40
|
syld3an3 |
|
| 42 |
39 41
|
eqbrtrrd |
|
| 43 |
10
|
recnd |
|
| 44 |
20
|
recnd |
|
| 45 |
43 44
|
subnegd |
|
| 46 |
42 45
|
breqtrrd |
|
| 47 |
8 10 21 46
|
lesubd |
|
| 48 |
6 47
|
eqbrtrd |
|
| 49 |
|
simp2 |
|
| 50 |
1 3
|
nvscl |
|
| 51 |
12 50
|
mp3an2 |
|
| 52 |
51
|
3adant2 |
|
| 53 |
|
simp3 |
|
| 54 |
1 2
|
nvass |
|
| 55 |
11 49 52 53 54
|
syl13anc |
|
| 56 |
1 2 3 31
|
nvlinv |
|
| 57 |
56
|
3adant2 |
|
| 58 |
57
|
oveq2d |
|
| 59 |
1 2 31
|
nv0rid |
|
| 60 |
59
|
3adant3 |
|
| 61 |
55 58 60
|
3eqtrd |
|
| 62 |
61
|
fveq2d |
|
| 63 |
1 2
|
nvgcl |
|
| 64 |
52 63
|
syld3an3 |
|
| 65 |
1 2 4
|
nvtri |
|
| 66 |
64 65
|
syld3an2 |
|
| 67 |
62 66
|
eqbrtrrd |
|
| 68 |
1 4
|
nvcl |
|
| 69 |
11 64 68
|
syl2anc |
|
| 70 |
10 8 69
|
lesubaddd |
|
| 71 |
67 70
|
mpbird |
|
| 72 |
10 8
|
resubcld |
|
| 73 |
72 69
|
absled |
|
| 74 |
48 71 73
|
mpbir2and |
|