Metamath Proof Explorer


Theorem nvadd32

Description: Commutative/associative law for vector addition. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvgcl.1 X = BaseSet U
nvgcl.2 G = + v U
Assertion nvadd32 U NrmCVec A X B X C X A G B G C = A G C G B

Proof

Step Hyp Ref Expression
1 nvgcl.1 X = BaseSet U
2 nvgcl.2 G = + v U
3 2 nvablo U NrmCVec G AbelOp
4 1 2 bafval X = ran G
5 4 ablo32 G AbelOp A X B X C X A G B G C = A G C G B
6 3 5 sylan U NrmCVec A X B X C X A G B G C = A G C G B