Metamath Proof Explorer


Theorem nvadd4

Description: Rearrangement of 4 terms in a vector sum. (Contributed by NM, 8-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvgcl.1 X = BaseSet U
nvgcl.2 G = + v U
Assertion nvadd4 U NrmCVec A X B X C X D X A G B G C G D = A G C G B G D

Proof

Step Hyp Ref Expression
1 nvgcl.1 X = BaseSet U
2 nvgcl.2 G = + v U
3 2 nvablo U NrmCVec G AbelOp
4 1 2 bafval X = ran G
5 4 ablo4 G AbelOp A X B X C X D X A G B G C G D = A G C G B G D
6 3 5 syl3an1 U NrmCVec A X B X C X D X A G B G C G D = A G C G B G D