Metamath Proof Explorer


Theorem nvaddsub

Description: Commutative/associative law for vector addition and subtraction. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvpncan2.1 X = BaseSet U
nvpncan2.2 G = + v U
nvpncan2.3 M = - v U
Assertion nvaddsub U NrmCVec A X B X C X A G B M C = A M C G B

Proof

Step Hyp Ref Expression
1 nvpncan2.1 X = BaseSet U
2 nvpncan2.2 G = + v U
3 nvpncan2.3 M = - v U
4 2 nvablo U NrmCVec G AbelOp
5 1 2 bafval X = ran G
6 2 3 vsfval M = / g G
7 5 6 ablomuldiv G AbelOp A X B X C X A G B M C = A M C G B
8 4 7 sylan U NrmCVec A X B X C X A G B M C = A M C G B