Metamath Proof Explorer


Theorem nvaddsub4

Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvpncan2.1 X = BaseSet U
nvpncan2.2 G = + v U
nvpncan2.3 M = - v U
Assertion nvaddsub4 U NrmCVec A X B X C X D X A G B M C G D = A M C G B M D

Proof

Step Hyp Ref Expression
1 nvpncan2.1 X = BaseSet U
2 nvpncan2.2 G = + v U
3 nvpncan2.3 M = - v U
4 neg1cn 1
5 eqid 𝑠OLD U = 𝑠OLD U
6 1 2 5 nvdi U NrmCVec 1 C X D X -1 𝑠OLD U C G D = -1 𝑠OLD U C G -1 𝑠OLD U D
7 4 6 mp3anr1 U NrmCVec C X D X -1 𝑠OLD U C G D = -1 𝑠OLD U C G -1 𝑠OLD U D
8 7 3adant2 U NrmCVec A X B X C X D X -1 𝑠OLD U C G D = -1 𝑠OLD U C G -1 𝑠OLD U D
9 8 oveq2d U NrmCVec A X B X C X D X A G B G -1 𝑠OLD U C G D = A G B G -1 𝑠OLD U C G -1 𝑠OLD U D
10 1 5 nvscl U NrmCVec 1 C X -1 𝑠OLD U C X
11 4 10 mp3an2 U NrmCVec C X -1 𝑠OLD U C X
12 1 5 nvscl U NrmCVec 1 D X -1 𝑠OLD U D X
13 4 12 mp3an2 U NrmCVec D X -1 𝑠OLD U D X
14 11 13 anim12dan U NrmCVec C X D X -1 𝑠OLD U C X -1 𝑠OLD U D X
15 14 3adant2 U NrmCVec A X B X C X D X -1 𝑠OLD U C X -1 𝑠OLD U D X
16 1 2 nvadd4 U NrmCVec A X B X -1 𝑠OLD U C X -1 𝑠OLD U D X A G B G -1 𝑠OLD U C G -1 𝑠OLD U D = A G -1 𝑠OLD U C G B G -1 𝑠OLD U D
17 15 16 syld3an3 U NrmCVec A X B X C X D X A G B G -1 𝑠OLD U C G -1 𝑠OLD U D = A G -1 𝑠OLD U C G B G -1 𝑠OLD U D
18 9 17 eqtrd U NrmCVec A X B X C X D X A G B G -1 𝑠OLD U C G D = A G -1 𝑠OLD U C G B G -1 𝑠OLD U D
19 simp1 U NrmCVec A X B X C X D X U NrmCVec
20 1 2 nvgcl U NrmCVec A X B X A G B X
21 20 3expb U NrmCVec A X B X A G B X
22 21 3adant3 U NrmCVec A X B X C X D X A G B X
23 1 2 nvgcl U NrmCVec C X D X C G D X
24 23 3expb U NrmCVec C X D X C G D X
25 24 3adant2 U NrmCVec A X B X C X D X C G D X
26 1 2 5 3 nvmval U NrmCVec A G B X C G D X A G B M C G D = A G B G -1 𝑠OLD U C G D
27 19 22 25 26 syl3anc U NrmCVec A X B X C X D X A G B M C G D = A G B G -1 𝑠OLD U C G D
28 1 2 5 3 nvmval U NrmCVec A X C X A M C = A G -1 𝑠OLD U C
29 28 3adant3r U NrmCVec A X C X D X A M C = A G -1 𝑠OLD U C
30 29 3adant2r U NrmCVec A X B X C X D X A M C = A G -1 𝑠OLD U C
31 1 2 5 3 nvmval U NrmCVec B X D X B M D = B G -1 𝑠OLD U D
32 31 3adant3l U NrmCVec B X C X D X B M D = B G -1 𝑠OLD U D
33 32 3adant2l U NrmCVec A X B X C X D X B M D = B G -1 𝑠OLD U D
34 30 33 oveq12d U NrmCVec A X B X C X D X A M C G B M D = A G -1 𝑠OLD U C G B G -1 𝑠OLD U D
35 18 27 34 3eqtr4d U NrmCVec A X B X C X D X A G B M C G D = A M C G B M D