Metamath Proof Explorer


Theorem nvcl

Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvf.1 X = BaseSet U
nvf.6 N = norm CV U
Assertion nvcl U NrmCVec A X N A

Proof

Step Hyp Ref Expression
1 nvf.1 X = BaseSet U
2 nvf.6 N = norm CV U
3 1 2 nvf U NrmCVec N : X
4 3 ffvelrnda U NrmCVec A X N A