Metamath Proof Explorer


Theorem nvcli

Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvf.1 X = BaseSet U
nvf.6 N = norm CV U
nvcli.9 U NrmCVec
nvcli.7 A X
Assertion nvcli N A

Proof

Step Hyp Ref Expression
1 nvf.1 X = BaseSet U
2 nvf.6 N = norm CV U
3 nvcli.9 U NrmCVec
4 nvcli.7 A X
5 1 2 nvcl U NrmCVec A X N A
6 3 4 5 mp2an N A