Metamath Proof Explorer


Theorem nvctvc

Description: A normed vector space is a topological vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nvctvc W NrmVec W TopVec

Proof

Step Hyp Ref Expression
1 nvcnlm W NrmVec W NrmMod
2 nlmtlm W NrmMod W TopMod
3 1 2 syl W NrmVec W TopMod
4 eqid Scalar W = Scalar W
5 4 nlmnrg W NrmMod Scalar W NrmRing
6 1 5 syl W NrmVec Scalar W NrmRing
7 nvclvec W NrmVec W LVec
8 4 lvecdrng W LVec Scalar W DivRing
9 7 8 syl W NrmVec Scalar W DivRing
10 nrgtdrg Scalar W NrmRing Scalar W DivRing Scalar W TopDRing
11 6 9 10 syl2anc W NrmVec Scalar W TopDRing
12 4 istvc W TopVec W TopMod Scalar W TopDRing
13 3 11 12 sylanbrc W NrmVec W TopVec