Metamath Proof Explorer


Theorem nvctvc

Description: A normed vector space is a topological vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nvctvc WNrmVecWTopVec

Proof

Step Hyp Ref Expression
1 nvcnlm WNrmVecWNrmMod
2 nlmtlm WNrmModWTopMod
3 1 2 syl WNrmVecWTopMod
4 eqid ScalarW=ScalarW
5 4 nlmnrg WNrmModScalarWNrmRing
6 1 5 syl WNrmVecScalarWNrmRing
7 nvclvec WNrmVecWLVec
8 4 lvecdrng WLVecScalarWDivRing
9 7 8 syl WNrmVecScalarWDivRing
10 nrgtdrg ScalarWNrmRingScalarWDivRingScalarWTopDRing
11 6 9 10 syl2anc WNrmVecScalarWTopDRing
12 4 istvc WTopVecWTopModScalarWTopDRing
13 3 11 12 sylanbrc WNrmVecWTopVec