Metamath Proof Explorer


Theorem nvex

Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)

Ref Expression
Assertion nvex G S N NrmCVec G V S V N V

Proof

Step Hyp Ref Expression
1 nvvcop G S N NrmCVec G S CVec OLD
2 vcex G S CVec OLD G V S V
3 1 2 syl G S N NrmCVec G V S V
4 nvss NrmCVec CVec OLD × V
5 4 sseli G S N NrmCVec G S N CVec OLD × V
6 opelxp2 G S N CVec OLD × V N V
7 5 6 syl G S N NrmCVec N V
8 df-3an G V S V N V G V S V N V
9 3 7 8 sylanbrc G S N NrmCVec G V S V N V