Metamath Proof Explorer


Theorem nvf

Description: Mapping for the norm function. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvf.1 X = BaseSet U
nvf.6 N = norm CV U
Assertion nvf U NrmCVec N : X

Proof

Step Hyp Ref Expression
1 nvf.1 X = BaseSet U
2 nvf.6 N = norm CV U
3 eqid + v U = + v U
4 eqid 𝑠OLD U = 𝑠OLD U
5 eqid 0 vec U = 0 vec U
6 1 3 4 5 2 nvi U NrmCVec + v U 𝑠OLD U CVec OLD N : X x X N x = 0 x = 0 vec U y N y 𝑠OLD U x = y N x y X N x + v U y N x + N y
7 6 simp2d U NrmCVec N : X