Metamath Proof Explorer


Theorem nvgt0

Description: A nonzero norm is positive. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvgt0.1 X = BaseSet U
nvgt0.5 Z = 0 vec U
nvgt0.6 N = norm CV U
Assertion nvgt0 U NrmCVec A X A Z 0 < N A

Proof

Step Hyp Ref Expression
1 nvgt0.1 X = BaseSet U
2 nvgt0.5 Z = 0 vec U
3 nvgt0.6 N = norm CV U
4 1 2 3 nvz U NrmCVec A X N A = 0 A = Z
5 4 necon3bid U NrmCVec A X N A 0 A Z
6 1 3 nvcl U NrmCVec A X N A
7 1 3 nvge0 U NrmCVec A X 0 N A
8 ne0gt0 N A 0 N A N A 0 0 < N A
9 6 7 8 syl2anc U NrmCVec A X N A 0 0 < N A
10 5 9 bitr3d U NrmCVec A X A Z 0 < N A