Metamath Proof Explorer


Theorem nvi

Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvi.1 X = BaseSet U
nvi.2 G = + v U
nvi.4 S = 𝑠OLD U
nvi.5 Z = 0 vec U
nvi.6 N = norm CV U
Assertion nvi U NrmCVec G S CVec OLD N : X x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y

Proof

Step Hyp Ref Expression
1 nvi.1 X = BaseSet U
2 nvi.2 G = + v U
3 nvi.4 S = 𝑠OLD U
4 nvi.5 Z = 0 vec U
5 nvi.6 N = norm CV U
6 eqid 1 st U = 1 st U
7 6 5 nvop2 U NrmCVec U = 1 st U N
8 6 2 3 nvvop U NrmCVec 1 st U = G S
9 8 opeq1d U NrmCVec 1 st U N = G S N
10 7 9 eqtrd U NrmCVec U = G S N
11 id U NrmCVec U NrmCVec
12 10 11 eqeltrrd U NrmCVec G S N NrmCVec
13 1 2 bafval X = ran G
14 eqid GId G = GId G
15 13 14 isnv G S N NrmCVec G S CVec OLD N : X x X N x = 0 x = GId G y N y S x = y N x y X N x G y N x + N y
16 12 15 sylib U NrmCVec G S CVec OLD N : X x X N x = 0 x = GId G y N y S x = y N x y X N x G y N x + N y
17 2 4 0vfval U NrmCVec Z = GId G
18 17 eqeq2d U NrmCVec x = Z x = GId G
19 18 imbi2d U NrmCVec N x = 0 x = Z N x = 0 x = GId G
20 19 3anbi1d U NrmCVec N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y N x = 0 x = GId G y N y S x = y N x y X N x G y N x + N y
21 20 ralbidv U NrmCVec x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y x X N x = 0 x = GId G y N y S x = y N x y X N x G y N x + N y
22 21 3anbi3d U NrmCVec G S CVec OLD N : X x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y G S CVec OLD N : X x X N x = 0 x = GId G y N y S x = y N x y X N x G y N x + N y
23 16 22 mpbird U NrmCVec G S CVec OLD N : X x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y