Metamath Proof Explorer


Theorem nvinv

Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvinv.1 X = BaseSet U
nvinv.2 G = + v U
nvinv.4 S = 𝑠OLD U
nvinv.5 M = inv G
Assertion nvinv U NrmCVec A X -1 S A = M A

Proof

Step Hyp Ref Expression
1 nvinv.1 X = BaseSet U
2 nvinv.2 G = + v U
3 nvinv.4 S = 𝑠OLD U
4 nvinv.5 M = inv G
5 eqid 1 st U = 1 st U
6 5 nvvc U NrmCVec 1 st U CVec OLD
7 2 vafval G = 1 st 1 st U
8 3 smfval S = 2 nd 1 st U
9 1 2 bafval X = ran G
10 7 8 9 4 vcm 1 st U CVec OLD A X -1 S A = M A
11 6 10 sylan U NrmCVec A X -1 S A = M A