Metamath Proof Explorer


Theorem nvinvfval

Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvinvfval.2 G = + v U
nvinvfval.4 S = 𝑠OLD U
nvinvfval.3 N = S 2 nd 1 × V -1
Assertion nvinvfval U NrmCVec N = inv G

Proof

Step Hyp Ref Expression
1 nvinvfval.2 G = + v U
2 nvinvfval.4 S = 𝑠OLD U
3 nvinvfval.3 N = S 2 nd 1 × V -1
4 eqid BaseSet U = BaseSet U
5 4 2 nvsf U NrmCVec S : × BaseSet U BaseSet U
6 neg1cn 1
7 3 curry1f S : × BaseSet U BaseSet U 1 N : BaseSet U BaseSet U
8 5 6 7 sylancl U NrmCVec N : BaseSet U BaseSet U
9 8 ffnd U NrmCVec N Fn BaseSet U
10 1 nvgrp U NrmCVec G GrpOp
11 4 1 bafval BaseSet U = ran G
12 eqid inv G = inv G
13 11 12 grpoinvf G GrpOp inv G : BaseSet U 1-1 onto BaseSet U
14 f1ofn inv G : BaseSet U 1-1 onto BaseSet U inv G Fn BaseSet U
15 10 13 14 3syl U NrmCVec inv G Fn BaseSet U
16 5 ffnd U NrmCVec S Fn × BaseSet U
17 16 adantr U NrmCVec x BaseSet U S Fn × BaseSet U
18 3 curry1val S Fn × BaseSet U 1 N x = -1 S x
19 17 6 18 sylancl U NrmCVec x BaseSet U N x = -1 S x
20 4 1 2 12 nvinv U NrmCVec x BaseSet U -1 S x = inv G x
21 19 20 eqtrd U NrmCVec x BaseSet U N x = inv G x
22 9 15 21 eqfnfvd U NrmCVec N = inv G