Metamath Proof Explorer


Theorem nvlinv

Description: Minus a vector plus itself. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvrinv.1 X = BaseSet U
nvrinv.2 G = + v U
nvrinv.4 S = 𝑠OLD U
nvrinv.6 Z = 0 vec U
Assertion nvlinv U NrmCVec A X -1 S A G A = Z

Proof

Step Hyp Ref Expression
1 nvrinv.1 X = BaseSet U
2 nvrinv.2 G = + v U
3 nvrinv.4 S = 𝑠OLD U
4 nvrinv.6 Z = 0 vec U
5 2 nvgrp U NrmCVec G GrpOp
6 1 2 bafval X = ran G
7 eqid GId G = GId G
8 eqid inv G = inv G
9 6 7 8 grpolinv G GrpOp A X inv G A G A = GId G
10 5 9 sylan U NrmCVec A X inv G A G A = GId G
11 1 2 3 8 nvinv U NrmCVec A X -1 S A = inv G A
12 11 oveq1d U NrmCVec A X -1 S A G A = inv G A G A
13 2 4 0vfval U NrmCVec Z = GId G
14 13 adantr U NrmCVec A X Z = GId G
15 10 12 14 3eqtr4d U NrmCVec A X -1 S A G A = Z