Metamath Proof Explorer


Theorem nvmeq0

Description: The difference between two vectors is zero iff they are equal. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvmeq0.1 X = BaseSet U
nvmeq0.3 M = - v U
nvmeq0.5 Z = 0 vec U
Assertion nvmeq0 U NrmCVec A X B X A M B = Z A = B

Proof

Step Hyp Ref Expression
1 nvmeq0.1 X = BaseSet U
2 nvmeq0.3 M = - v U
3 nvmeq0.5 Z = 0 vec U
4 1 2 nvmcl U NrmCVec A X B X A M B X
5 4 3expb U NrmCVec A X B X A M B X
6 1 3 nvzcl U NrmCVec Z X
7 6 adantr U NrmCVec A X B X Z X
8 simprr U NrmCVec A X B X B X
9 5 7 8 3jca U NrmCVec A X B X A M B X Z X B X
10 eqid + v U = + v U
11 1 10 nvrcan U NrmCVec A M B X Z X B X A M B + v U B = Z + v U B A M B = Z
12 9 11 syldan U NrmCVec A X B X A M B + v U B = Z + v U B A M B = Z
13 12 3impb U NrmCVec A X B X A M B + v U B = Z + v U B A M B = Z
14 1 10 2 nvnpcan U NrmCVec A X B X A M B + v U B = A
15 1 10 3 nv0lid U NrmCVec B X Z + v U B = B
16 15 3adant2 U NrmCVec A X B X Z + v U B = B
17 14 16 eqeq12d U NrmCVec A X B X A M B + v U B = Z + v U B A = B
18 13 17 bitr3d U NrmCVec A X B X A M B = Z A = B