Metamath Proof Explorer


Theorem nvmf

Description: Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvmf.1 X = BaseSet U
nvmf.3 M = - v U
Assertion nvmf U NrmCVec M : X × X X

Proof

Step Hyp Ref Expression
1 nvmf.1 X = BaseSet U
2 nvmf.3 M = - v U
3 simpl U NrmCVec x X y X U NrmCVec
4 simprl U NrmCVec x X y X x X
5 neg1cn 1
6 eqid 𝑠OLD U = 𝑠OLD U
7 1 6 nvscl U NrmCVec 1 y X -1 𝑠OLD U y X
8 5 7 mp3an2 U NrmCVec y X -1 𝑠OLD U y X
9 8 adantrl U NrmCVec x X y X -1 𝑠OLD U y X
10 eqid + v U = + v U
11 1 10 nvgcl U NrmCVec x X -1 𝑠OLD U y X x + v U -1 𝑠OLD U y X
12 3 4 9 11 syl3anc U NrmCVec x X y X x + v U -1 𝑠OLD U y X
13 12 ralrimivva U NrmCVec x X y X x + v U -1 𝑠OLD U y X
14 eqid x X , y X x + v U -1 𝑠OLD U y = x X , y X x + v U -1 𝑠OLD U y
15 14 fmpo x X y X x + v U -1 𝑠OLD U y X x X , y X x + v U -1 𝑠OLD U y : X × X X
16 13 15 sylib U NrmCVec x X , y X x + v U -1 𝑠OLD U y : X × X X
17 1 10 6 2 nvmfval U NrmCVec M = x X , y X x + v U -1 𝑠OLD U y
18 17 feq1d U NrmCVec M : X × X X x X , y X x + v U -1 𝑠OLD U y : X × X X
19 16 18 mpbird U NrmCVec M : X × X X