Metamath Proof Explorer


Theorem nvmf

Description: Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvmf.1 X=BaseSetU
nvmf.3 M=-vU
Assertion nvmf UNrmCVecM:X×XX

Proof

Step Hyp Ref Expression
1 nvmf.1 X=BaseSetU
2 nvmf.3 M=-vU
3 simpl UNrmCVecxXyXUNrmCVec
4 simprl UNrmCVecxXyXxX
5 neg1cn 1
6 eqid 𝑠OLDU=𝑠OLDU
7 1 6 nvscl UNrmCVec1yX-1𝑠OLDUyX
8 5 7 mp3an2 UNrmCVecyX-1𝑠OLDUyX
9 8 adantrl UNrmCVecxXyX-1𝑠OLDUyX
10 eqid +vU=+vU
11 1 10 nvgcl UNrmCVecxX-1𝑠OLDUyXx+vU-1𝑠OLDUyX
12 3 4 9 11 syl3anc UNrmCVecxXyXx+vU-1𝑠OLDUyX
13 12 ralrimivva UNrmCVecxXyXx+vU-1𝑠OLDUyX
14 eqid xX,yXx+vU-1𝑠OLDUy=xX,yXx+vU-1𝑠OLDUy
15 14 fmpo xXyXx+vU-1𝑠OLDUyXxX,yXx+vU-1𝑠OLDUy:X×XX
16 13 15 sylib UNrmCVecxX,yXx+vU-1𝑠OLDUy:X×XX
17 1 10 6 2 nvmfval UNrmCVecM=xX,yXx+vU-1𝑠OLDUy
18 17 feq1d UNrmCVecM:X×XXxX,yXx+vU-1𝑠OLDUy:X×XX
19 16 18 mpbird UNrmCVecM:X×XX