Metamath Proof Explorer


Theorem nvmid

Description: A vector minus itself is the zero vector. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvmeq0.1 X = BaseSet U
nvmeq0.3 M = - v U
nvmeq0.5 Z = 0 vec U
Assertion nvmid U NrmCVec A X A M A = Z

Proof

Step Hyp Ref Expression
1 nvmeq0.1 X = BaseSet U
2 nvmeq0.3 M = - v U
3 nvmeq0.5 Z = 0 vec U
4 eqid A = A
5 1 2 3 nvmeq0 U NrmCVec A X A X A M A = Z A = A
6 5 3anidm23 U NrmCVec A X A M A = Z A = A
7 4 6 mpbiri U NrmCVec A X A M A = Z