Metamath Proof Explorer


Theorem nvmtri

Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvmtri.1 X = BaseSet U
nvmtri.3 M = - v U
nvmtri.6 N = norm CV U
Assertion nvmtri U NrmCVec A X B X N A M B N A + N B

Proof

Step Hyp Ref Expression
1 nvmtri.1 X = BaseSet U
2 nvmtri.3 M = - v U
3 nvmtri.6 N = norm CV U
4 neg1cn 1
5 eqid 𝑠OLD U = 𝑠OLD U
6 1 5 nvscl U NrmCVec 1 B X -1 𝑠OLD U B X
7 4 6 mp3an2 U NrmCVec B X -1 𝑠OLD U B X
8 7 3adant2 U NrmCVec A X B X -1 𝑠OLD U B X
9 eqid + v U = + v U
10 1 9 3 nvtri U NrmCVec A X -1 𝑠OLD U B X N A + v U -1 𝑠OLD U B N A + N -1 𝑠OLD U B
11 8 10 syld3an3 U NrmCVec A X B X N A + v U -1 𝑠OLD U B N A + N -1 𝑠OLD U B
12 1 9 5 2 nvmval U NrmCVec A X B X A M B = A + v U -1 𝑠OLD U B
13 12 fveq2d U NrmCVec A X B X N A M B = N A + v U -1 𝑠OLD U B
14 1 5 3 nvs U NrmCVec 1 B X N -1 𝑠OLD U B = 1 N B
15 4 14 mp3an2 U NrmCVec B X N -1 𝑠OLD U B = 1 N B
16 ax-1cn 1
17 16 absnegi 1 = 1
18 abs1 1 = 1
19 17 18 eqtri 1 = 1
20 19 oveq1i 1 N B = 1 N B
21 1 3 nvcl U NrmCVec B X N B
22 21 recnd U NrmCVec B X N B
23 22 mulid2d U NrmCVec B X 1 N B = N B
24 20 23 syl5eq U NrmCVec B X 1 N B = N B
25 15 24 eqtr2d U NrmCVec B X N B = N -1 𝑠OLD U B
26 25 3adant2 U NrmCVec A X B X N B = N -1 𝑠OLD U B
27 26 oveq2d U NrmCVec A X B X N A + N B = N A + N -1 𝑠OLD U B
28 11 13 27 3brtr4d U NrmCVec A X B X N A M B N A + N B