Metamath Proof Explorer


Theorem nvmul0or

Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvmul0or.1 X = BaseSet U
nvmul0or.4 S = 𝑠OLD U
nvmul0or.6 Z = 0 vec U
Assertion nvmul0or U NrmCVec A B X A S B = Z A = 0 B = Z

Proof

Step Hyp Ref Expression
1 nvmul0or.1 X = BaseSet U
2 nvmul0or.4 S = 𝑠OLD U
3 nvmul0or.6 Z = 0 vec U
4 df-ne A 0 ¬ A = 0
5 oveq2 A S B = Z 1 A S A S B = 1 A S Z
6 5 ad2antlr U NrmCVec A B X A S B = Z A 0 1 A S A S B = 1 A S Z
7 recid2 A A 0 1 A A = 1
8 7 oveq1d A A 0 1 A A S B = 1 S B
9 8 3ad2antl2 U NrmCVec A B X A 0 1 A A S B = 1 S B
10 simpl1 U NrmCVec A B X A 0 U NrmCVec
11 reccl A A 0 1 A
12 11 3ad2antl2 U NrmCVec A B X A 0 1 A
13 simpl2 U NrmCVec A B X A 0 A
14 simpl3 U NrmCVec A B X A 0 B X
15 1 2 nvsass U NrmCVec 1 A A B X 1 A A S B = 1 A S A S B
16 10 12 13 14 15 syl13anc U NrmCVec A B X A 0 1 A A S B = 1 A S A S B
17 1 2 nvsid U NrmCVec B X 1 S B = B
18 17 3adant2 U NrmCVec A B X 1 S B = B
19 18 adantr U NrmCVec A B X A 0 1 S B = B
20 9 16 19 3eqtr3d U NrmCVec A B X A 0 1 A S A S B = B
21 20 adantlr U NrmCVec A B X A S B = Z A 0 1 A S A S B = B
22 2 3 nvsz U NrmCVec 1 A 1 A S Z = Z
23 11 22 sylan2 U NrmCVec A A 0 1 A S Z = Z
24 23 anassrs U NrmCVec A A 0 1 A S Z = Z
25 24 3adantl3 U NrmCVec A B X A 0 1 A S Z = Z
26 25 adantlr U NrmCVec A B X A S B = Z A 0 1 A S Z = Z
27 6 21 26 3eqtr3d U NrmCVec A B X A S B = Z A 0 B = Z
28 27 ex U NrmCVec A B X A S B = Z A 0 B = Z
29 4 28 syl5bir U NrmCVec A B X A S B = Z ¬ A = 0 B = Z
30 29 orrd U NrmCVec A B X A S B = Z A = 0 B = Z
31 30 ex U NrmCVec A B X A S B = Z A = 0 B = Z
32 1 2 3 nv0 U NrmCVec B X 0 S B = Z
33 oveq1 A = 0 A S B = 0 S B
34 33 eqeq1d A = 0 A S B = Z 0 S B = Z
35 32 34 syl5ibrcom U NrmCVec B X A = 0 A S B = Z
36 35 3adant2 U NrmCVec A B X A = 0 A S B = Z
37 2 3 nvsz U NrmCVec A A S Z = Z
38 oveq2 B = Z A S B = A S Z
39 38 eqeq1d B = Z A S B = Z A S Z = Z
40 37 39 syl5ibrcom U NrmCVec A B = Z A S B = Z
41 40 3adant3 U NrmCVec A B X B = Z A S B = Z
42 36 41 jaod U NrmCVec A B X A = 0 B = Z A S B = Z
43 31 42 impbid U NrmCVec A B X A S B = Z A = 0 B = Z