Step |
Hyp |
Ref |
Expression |
1 |
|
nvmul0or.1 |
|
2 |
|
nvmul0or.4 |
|
3 |
|
nvmul0or.6 |
|
4 |
|
df-ne |
|
5 |
|
oveq2 |
|
6 |
5
|
ad2antlr |
|
7 |
|
recid2 |
|
8 |
7
|
oveq1d |
|
9 |
8
|
3ad2antl2 |
|
10 |
|
simpl1 |
|
11 |
|
reccl |
|
12 |
11
|
3ad2antl2 |
|
13 |
|
simpl2 |
|
14 |
|
simpl3 |
|
15 |
1 2
|
nvsass |
|
16 |
10 12 13 14 15
|
syl13anc |
|
17 |
1 2
|
nvsid |
|
18 |
17
|
3adant2 |
|
19 |
18
|
adantr |
|
20 |
9 16 19
|
3eqtr3d |
|
21 |
20
|
adantlr |
|
22 |
2 3
|
nvsz |
|
23 |
11 22
|
sylan2 |
|
24 |
23
|
anassrs |
|
25 |
24
|
3adantl3 |
|
26 |
25
|
adantlr |
|
27 |
6 21 26
|
3eqtr3d |
|
28 |
27
|
ex |
|
29 |
4 28
|
syl5bir |
|
30 |
29
|
orrd |
|
31 |
30
|
ex |
|
32 |
1 2 3
|
nv0 |
|
33 |
|
oveq1 |
|
34 |
33
|
eqeq1d |
|
35 |
32 34
|
syl5ibrcom |
|
36 |
35
|
3adant2 |
|
37 |
2 3
|
nvsz |
|
38 |
|
oveq2 |
|
39 |
38
|
eqeq1d |
|
40 |
37 39
|
syl5ibrcom |
|
41 |
40
|
3adant3 |
|
42 |
36 41
|
jaod |
|
43 |
31 42
|
impbid |
|