| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvmul0or.1 |  | 
						
							| 2 |  | nvmul0or.4 |  | 
						
							| 3 |  | nvmul0or.6 |  | 
						
							| 4 |  | df-ne |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 | 5 | ad2antlr |  | 
						
							| 7 |  | recid2 |  | 
						
							| 8 | 7 | oveq1d |  | 
						
							| 9 | 8 | 3ad2antl2 |  | 
						
							| 10 |  | simpl1 |  | 
						
							| 11 |  | reccl |  | 
						
							| 12 | 11 | 3ad2antl2 |  | 
						
							| 13 |  | simpl2 |  | 
						
							| 14 |  | simpl3 |  | 
						
							| 15 | 1 2 | nvsass |  | 
						
							| 16 | 10 12 13 14 15 | syl13anc |  | 
						
							| 17 | 1 2 | nvsid |  | 
						
							| 18 | 17 | 3adant2 |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 9 16 19 | 3eqtr3d |  | 
						
							| 21 | 20 | adantlr |  | 
						
							| 22 | 2 3 | nvsz |  | 
						
							| 23 | 11 22 | sylan2 |  | 
						
							| 24 | 23 | anassrs |  | 
						
							| 25 | 24 | 3adantl3 |  | 
						
							| 26 | 25 | adantlr |  | 
						
							| 27 | 6 21 26 | 3eqtr3d |  | 
						
							| 28 | 27 | ex |  | 
						
							| 29 | 4 28 | biimtrrid |  | 
						
							| 30 | 29 | orrd |  | 
						
							| 31 | 30 | ex |  | 
						
							| 32 | 1 2 3 | nv0 |  | 
						
							| 33 |  | oveq1 |  | 
						
							| 34 | 33 | eqeq1d |  | 
						
							| 35 | 32 34 | syl5ibrcom |  | 
						
							| 36 | 35 | 3adant2 |  | 
						
							| 37 | 2 3 | nvsz |  | 
						
							| 38 |  | oveq2 |  | 
						
							| 39 | 38 | eqeq1d |  | 
						
							| 40 | 37 39 | syl5ibrcom |  | 
						
							| 41 | 40 | 3adant3 |  | 
						
							| 42 | 36 41 | jaod |  | 
						
							| 43 | 31 42 | impbid |  |