Metamath Proof Explorer


Theorem nvmval

Description: Value of vector subtraction on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvmval.1 X = BaseSet U
nvmval.2 G = + v U
nvmval.4 S = 𝑠OLD U
nvmval.3 M = - v U
Assertion nvmval U NrmCVec A X B X A M B = A G -1 S B

Proof

Step Hyp Ref Expression
1 nvmval.1 X = BaseSet U
2 nvmval.2 G = + v U
3 nvmval.4 S = 𝑠OLD U
4 nvmval.3 M = - v U
5 2 nvgrp U NrmCVec G GrpOp
6 1 2 bafval X = ran G
7 eqid inv G = inv G
8 eqid / g G = / g G
9 6 7 8 grpodivval G GrpOp A X B X A / g G B = A G inv G B
10 5 9 syl3an1 U NrmCVec A X B X A / g G B = A G inv G B
11 1 2 4 8 nvm U NrmCVec A X B X A M B = A / g G B
12 1 2 3 7 nvinv U NrmCVec B X -1 S B = inv G B
13 12 3adant2 U NrmCVec A X B X -1 S B = inv G B
14 13 oveq2d U NrmCVec A X B X A G -1 S B = A G inv G B
15 10 11 14 3eqtr4d U NrmCVec A X B X A M B = A G -1 S B