Metamath Proof Explorer


Theorem nvmval2

Description: Value of vector subtraction on a normed complex vector space. (Contributed by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvmval.1 X = BaseSet U
nvmval.2 G = + v U
nvmval.4 S = 𝑠OLD U
nvmval.3 M = - v U
Assertion nvmval2 U NrmCVec A X B X A M B = -1 S B G A

Proof

Step Hyp Ref Expression
1 nvmval.1 X = BaseSet U
2 nvmval.2 G = + v U
3 nvmval.4 S = 𝑠OLD U
4 nvmval.3 M = - v U
5 1 2 3 4 nvmval U NrmCVec A X B X A M B = A G -1 S B
6 neg1cn 1
7 1 3 nvscl U NrmCVec 1 B X -1 S B X
8 6 7 mp3an2 U NrmCVec B X -1 S B X
9 8 3adant2 U NrmCVec A X B X -1 S B X
10 1 2 nvcom U NrmCVec A X -1 S B X A G -1 S B = -1 S B G A
11 9 10 syld3an3 U NrmCVec A X B X A G -1 S B = -1 S B G A
12 5 11 eqtrd U NrmCVec A X B X A M B = -1 S B G A