Metamath Proof Explorer


Theorem nvnd

Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of Kreyszig p. 63. (Contributed by NM, 4-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvnd.1 X = BaseSet U
nvnd.5 Z = 0 vec U
nvnd.6 N = norm CV U
nvnd.8 D = IndMet U
Assertion nvnd U NrmCVec A X N A = A D Z

Proof

Step Hyp Ref Expression
1 nvnd.1 X = BaseSet U
2 nvnd.5 Z = 0 vec U
3 nvnd.6 N = norm CV U
4 nvnd.8 D = IndMet U
5 1 2 nvzcl U NrmCVec Z X
6 5 adantr U NrmCVec A X Z X
7 eqid - v U = - v U
8 1 7 3 4 imsdval U NrmCVec A X Z X A D Z = N A - v U Z
9 6 8 mpd3an3 U NrmCVec A X A D Z = N A - v U Z
10 eqid + v U = + v U
11 eqid 𝑠OLD U = 𝑠OLD U
12 1 10 11 7 nvmval U NrmCVec A X Z X A - v U Z = A + v U -1 𝑠OLD U Z
13 6 12 mpd3an3 U NrmCVec A X A - v U Z = A + v U -1 𝑠OLD U Z
14 neg1cn 1
15 11 2 nvsz U NrmCVec 1 -1 𝑠OLD U Z = Z
16 14 15 mpan2 U NrmCVec -1 𝑠OLD U Z = Z
17 16 oveq2d U NrmCVec A + v U -1 𝑠OLD U Z = A + v U Z
18 17 adantr U NrmCVec A X A + v U -1 𝑠OLD U Z = A + v U Z
19 1 10 2 nv0rid U NrmCVec A X A + v U Z = A
20 13 18 19 3eqtrd U NrmCVec A X A - v U Z = A
21 20 fveq2d U NrmCVec A X N A - v U Z = N A
22 9 21 eqtr2d U NrmCVec A X N A = A D Z