Metamath Proof Explorer


Theorem nvnegneg

Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvnegneg.1 X = BaseSet U
nvnegneg.4 S = 𝑠OLD U
Assertion nvnegneg U NrmCVec A X -1 S -1 S A = A

Proof

Step Hyp Ref Expression
1 nvnegneg.1 X = BaseSet U
2 nvnegneg.4 S = 𝑠OLD U
3 neg1cn 1
4 1 2 nvscl U NrmCVec 1 A X -1 S A X
5 3 4 mp3an2 U NrmCVec A X -1 S A X
6 eqid + v U = + v U
7 eqid inv + v U = inv + v U
8 1 6 2 7 nvinv U NrmCVec -1 S A X -1 S -1 S A = inv + v U -1 S A
9 5 8 syldan U NrmCVec A X -1 S -1 S A = inv + v U -1 S A
10 1 6 2 7 nvinv U NrmCVec A X -1 S A = inv + v U A
11 10 fveq2d U NrmCVec A X inv + v U -1 S A = inv + v U inv + v U A
12 6 nvgrp U NrmCVec + v U GrpOp
13 1 6 bafval X = ran + v U
14 13 7 grpo2inv + v U GrpOp A X inv + v U inv + v U A = A
15 12 14 sylan U NrmCVec A X inv + v U inv + v U A = A
16 9 11 15 3eqtrd U NrmCVec A X -1 S -1 S A = A