Metamath Proof Explorer


Theorem nvnnncan1

Description: Cancellation law for vector subtraction. ( nnncan1 analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvmf.1 X = BaseSet U
nvmf.3 M = - v U
Assertion nvnnncan1 U NrmCVec A X B X C X A M B M A M C = C M B

Proof

Step Hyp Ref Expression
1 nvmf.1 X = BaseSet U
2 nvmf.3 M = - v U
3 eqid + v U = + v U
4 3 nvablo U NrmCVec + v U AbelOp
5 1 3 bafval X = ran + v U
6 3 2 vsfval M = / g + v U
7 5 6 ablonnncan1 + v U AbelOp A X B X C X A M B M A M C = C M B
8 4 7 sylan U NrmCVec A X B X C X A M B M A M C = C M B