Metamath Proof Explorer


Theorem nvnpcan

Description: Cancellation law for a normed complex vector space. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvpncan2.1 X = BaseSet U
nvpncan2.2 G = + v U
nvpncan2.3 M = - v U
Assertion nvnpcan U NrmCVec A X B X A M B G B = A

Proof

Step Hyp Ref Expression
1 nvpncan2.1 X = BaseSet U
2 nvpncan2.2 G = + v U
3 nvpncan2.3 M = - v U
4 simprl U NrmCVec A X B X A X
5 simprr U NrmCVec A X B X B X
6 4 5 5 3jca U NrmCVec A X B X A X B X B X
7 1 2 3 nvaddsub U NrmCVec A X B X B X A G B M B = A M B G B
8 6 7 syldan U NrmCVec A X B X A G B M B = A M B G B
9 8 3impb U NrmCVec A X B X A G B M B = A M B G B
10 1 2 3 nvpncan U NrmCVec A X B X A G B M B = A
11 9 10 eqtr3d U NrmCVec A X B X A M B G B = A