Metamath Proof Explorer


Theorem nvo00

Description: Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis nvo00.1 X = BaseSet U
Assertion nvo00 U NrmCVec T : X Y T = X × Z ran T = Z

Proof

Step Hyp Ref Expression
1 nvo00.1 X = BaseSet U
2 ffn T : X Y T Fn X
3 eqid 0 vec U = 0 vec U
4 1 3 nvzcl U NrmCVec 0 vec U X
5 4 ne0d U NrmCVec X
6 fconst5 T Fn X X T = X × Z ran T = Z
7 2 5 6 syl2anr U NrmCVec T : X Y T = X × Z ran T = Z