Metamath Proof Explorer


Theorem nvocnv

Description: The converse of an involution is the function itself. (Contributed by Thierry Arnoux, 7-May-2019)

Ref Expression
Assertion nvocnv F : A A x A F F x = x F -1 = F

Proof

Step Hyp Ref Expression
1 simprr F : A A x A F F x = x z A y = F z y = F z
2 simpll F : A A x A F F x = x z A y = F z F : A A
3 simprl F : A A x A F F x = x z A y = F z z A
4 2 3 ffvelrnd F : A A x A F F x = x z A y = F z F z A
5 1 4 eqeltrd F : A A x A F F x = x z A y = F z y A
6 1 fveq2d F : A A x A F F x = x z A y = F z F y = F F z
7 2fveq3 x = z F F x = F F z
8 id x = z x = z
9 7 8 eqeq12d x = z F F x = x F F z = z
10 simplr F : A A x A F F x = x z A y = F z x A F F x = x
11 9 10 3 rspcdva F : A A x A F F x = x z A y = F z F F z = z
12 6 11 eqtr2d F : A A x A F F x = x z A y = F z z = F y
13 5 12 jca F : A A x A F F x = x z A y = F z y A z = F y
14 simprr F : A A x A F F x = x y A z = F y z = F y
15 simpll F : A A x A F F x = x y A z = F y F : A A
16 simprl F : A A x A F F x = x y A z = F y y A
17 15 16 ffvelrnd F : A A x A F F x = x y A z = F y F y A
18 14 17 eqeltrd F : A A x A F F x = x y A z = F y z A
19 14 fveq2d F : A A x A F F x = x y A z = F y F z = F F y
20 2fveq3 x = y F F x = F F y
21 id x = y x = y
22 20 21 eqeq12d x = y F F x = x F F y = y
23 simplr F : A A x A F F x = x y A z = F y x A F F x = x
24 22 23 16 rspcdva F : A A x A F F x = x y A z = F y F F y = y
25 19 24 eqtr2d F : A A x A F F x = x y A z = F y y = F z
26 18 25 jca F : A A x A F F x = x y A z = F y z A y = F z
27 13 26 impbida F : A A x A F F x = x z A y = F z y A z = F y
28 27 mptcnv F : A A x A F F x = x z A F z -1 = y A F y
29 ffn F : A A F Fn A
30 dffn5 F Fn A F = z A F z
31 30 biimpi F Fn A F = z A F z
32 31 adantr F Fn A x A F F x = x F = z A F z
33 29 32 sylan F : A A x A F F x = x F = z A F z
34 33 cnveqd F : A A x A F F x = x F -1 = z A F z -1
35 dffn5 F Fn A F = y A F y
36 35 biimpi F Fn A F = y A F y
37 36 adantr F Fn A x A F F x = x F = y A F y
38 29 37 sylan F : A A x A F F x = x F = y A F y
39 28 34 38 3eqtr4d F : A A x A F F x = x F -1 = F