Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|
2 |
|
simpll |
|
3 |
|
simprl |
|
4 |
2 3
|
ffvelrnd |
|
5 |
1 4
|
eqeltrd |
|
6 |
1
|
fveq2d |
|
7 |
|
2fveq3 |
|
8 |
|
id |
|
9 |
7 8
|
eqeq12d |
|
10 |
|
simplr |
|
11 |
9 10 3
|
rspcdva |
|
12 |
6 11
|
eqtr2d |
|
13 |
5 12
|
jca |
|
14 |
|
simprr |
|
15 |
|
simpll |
|
16 |
|
simprl |
|
17 |
15 16
|
ffvelrnd |
|
18 |
14 17
|
eqeltrd |
|
19 |
14
|
fveq2d |
|
20 |
|
2fveq3 |
|
21 |
|
id |
|
22 |
20 21
|
eqeq12d |
|
23 |
|
simplr |
|
24 |
22 23 16
|
rspcdva |
|
25 |
19 24
|
eqtr2d |
|
26 |
18 25
|
jca |
|
27 |
13 26
|
impbida |
|
28 |
27
|
mptcnv |
|
29 |
|
ffn |
|
30 |
|
dffn5 |
|
31 |
30
|
biimpi |
|
32 |
31
|
adantr |
|
33 |
29 32
|
sylan |
|
34 |
33
|
cnveqd |
|
35 |
|
dffn5 |
|
36 |
35
|
biimpi |
|
37 |
36
|
adantr |
|
38 |
29 37
|
sylan |
|
39 |
28 34 38
|
3eqtr4d |
|