Metamath Proof Explorer


Theorem nvpncan

Description: Cancellation law for vector subtraction. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvpncan2.1 X = BaseSet U
nvpncan2.2 G = + v U
nvpncan2.3 M = - v U
Assertion nvpncan U NrmCVec A X B X A G B M B = A

Proof

Step Hyp Ref Expression
1 nvpncan2.1 X = BaseSet U
2 nvpncan2.2 G = + v U
3 nvpncan2.3 M = - v U
4 1 2 nvcom U NrmCVec B X A X B G A = A G B
5 4 oveq1d U NrmCVec B X A X B G A M B = A G B M B
6 1 2 3 nvpncan2 U NrmCVec B X A X B G A M B = A
7 5 6 eqtr3d U NrmCVec B X A X A G B M B = A
8 7 3com23 U NrmCVec A X B X A G B M B = A