Metamath Proof Explorer


Theorem nvpncan2

Description: Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvpncan2.1 X = BaseSet U
nvpncan2.2 G = + v U
nvpncan2.3 M = - v U
Assertion nvpncan2 U NrmCVec A X B X A G B M A = B

Proof

Step Hyp Ref Expression
1 nvpncan2.1 X = BaseSet U
2 nvpncan2.2 G = + v U
3 nvpncan2.3 M = - v U
4 simp1 U NrmCVec A X B X U NrmCVec
5 1 2 nvgcl U NrmCVec A X B X A G B X
6 simp2 U NrmCVec A X B X A X
7 eqid 𝑠OLD U = 𝑠OLD U
8 1 2 7 3 nvmval U NrmCVec A G B X A X A G B M A = A G B G -1 𝑠OLD U A
9 4 5 6 8 syl3anc U NrmCVec A X B X A G B M A = A G B G -1 𝑠OLD U A
10 simp3 U NrmCVec A X B X B X
11 neg1cn 1
12 1 7 nvscl U NrmCVec 1 A X -1 𝑠OLD U A X
13 11 12 mp3an2 U NrmCVec A X -1 𝑠OLD U A X
14 13 3adant3 U NrmCVec A X B X -1 𝑠OLD U A X
15 1 2 nvadd32 U NrmCVec A X B X -1 𝑠OLD U A X A G B G -1 𝑠OLD U A = A G -1 𝑠OLD U A G B
16 4 6 10 14 15 syl13anc U NrmCVec A X B X A G B G -1 𝑠OLD U A = A G -1 𝑠OLD U A G B
17 eqid 0 vec U = 0 vec U
18 1 2 7 17 nvrinv U NrmCVec A X A G -1 𝑠OLD U A = 0 vec U
19 18 3adant3 U NrmCVec A X B X A G -1 𝑠OLD U A = 0 vec U
20 19 oveq1d U NrmCVec A X B X A G -1 𝑠OLD U A G B = 0 vec U G B
21 1 2 17 nv0lid U NrmCVec B X 0 vec U G B = B
22 21 3adant2 U NrmCVec A X B X 0 vec U G B = B
23 20 22 eqtrd U NrmCVec A X B X A G -1 𝑠OLD U A G B = B
24 16 23 eqtrd U NrmCVec A X B X A G B G -1 𝑠OLD U A = B
25 9 24 eqtrd U NrmCVec A X B X A G B M A = B