Metamath Proof Explorer


Theorem nvsass

Description: Associative law for the scalar product of a normed complex vector space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvscl.1 X = BaseSet U
nvscl.4 S = 𝑠OLD U
Assertion nvsass U NrmCVec A B C X A B S C = A S B S C

Proof

Step Hyp Ref Expression
1 nvscl.1 X = BaseSet U
2 nvscl.4 S = 𝑠OLD U
3 eqid 1 st U = 1 st U
4 3 nvvc U NrmCVec 1 st U CVec OLD
5 eqid + v U = + v U
6 5 vafval + v U = 1 st 1 st U
7 2 smfval S = 2 nd 1 st U
8 1 5 bafval X = ran + v U
9 6 7 8 vcass 1 st U CVec OLD A B C X A B S C = A S B S C
10 4 9 sylan U NrmCVec A B C X A B S C = A S B S C