Metamath Proof Explorer


Theorem nvscl

Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvscl.1 X = BaseSet U
nvscl.4 S = 𝑠OLD U
Assertion nvscl U NrmCVec A B X A S B X

Proof

Step Hyp Ref Expression
1 nvscl.1 X = BaseSet U
2 nvscl.4 S = 𝑠OLD U
3 eqid 1 st U = 1 st U
4 3 nvvc U NrmCVec 1 st U CVec OLD
5 eqid + v U = + v U
6 5 vafval + v U = 1 st 1 st U
7 2 smfval S = 2 nd 1 st U
8 1 5 bafval X = ran + v U
9 6 7 8 vccl 1 st U CVec OLD A B X A S B X
10 4 9 syl3an1 U NrmCVec A B X A S B X