Metamath Proof Explorer


Theorem nvscom

Description: Commutative law for the scalar product of a normed complex vector space. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvscl.1 X = BaseSet U
nvscl.4 S = 𝑠OLD U
Assertion nvscom U NrmCVec A B C X A S B S C = B S A S C

Proof

Step Hyp Ref Expression
1 nvscl.1 X = BaseSet U
2 nvscl.4 S = 𝑠OLD U
3 mulcom A B A B = B A
4 3 oveq1d A B A B S C = B A S C
5 4 3adant3 A B C X A B S C = B A S C
6 5 adantl U NrmCVec A B C X A B S C = B A S C
7 1 2 nvsass U NrmCVec A B C X A B S C = A S B S C
8 3ancoma A B C X B A C X
9 1 2 nvsass U NrmCVec B A C X B A S C = B S A S C
10 8 9 sylan2b U NrmCVec A B C X B A S C = B S A S C
11 6 7 10 3eqtr3d U NrmCVec A B C X A S B S C = B S A S C