Metamath Proof Explorer


Theorem nvsf

Description: Mapping for the scalar multiplication operation. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvsf.1 X = BaseSet U
nvsf.4 S = 𝑠OLD U
Assertion nvsf U NrmCVec S : × X X

Proof

Step Hyp Ref Expression
1 nvsf.1 X = BaseSet U
2 nvsf.4 S = 𝑠OLD U
3 eqid 1 st U = 1 st U
4 3 nvvc U NrmCVec 1 st U CVec OLD
5 eqid + v U = + v U
6 5 vafval + v U = 1 st 1 st U
7 2 smfval S = 2 nd 1 st U
8 1 5 bafval X = ran + v U
9 6 7 8 vcsm 1 st U CVec OLD S : × X X
10 4 9 syl U NrmCVec S : × X X